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Abstract

Mativated by a recent work of Falin [8}, we consider a new multiclass
batch arrival retrial queue accepting n-types of customers who may arrive
in the same batch. If at an arrival epoch the server is idle then the
customers of the highest priority in the batch form an ordinary queue
waiting to be served while the rest of them leave the system and repeat
their demand individually after an exponentially distributed time different
for each type of customers. On the other hand, if the server is unavailable,
then all customers join their corresponding retrial box. Whenever the
server, upon a service completion, phases an empty queue departs for a
single vacation. Obviously there is a gate in front of server which is opened
when the server is idle. When the server is occupied the gate closes and will
be opened again upon the server returns from the vacation. An interesting
application of the proposed model, in streaming multimedia applications
is also presented. For such a system, we obtain in steady state the mean
number of customers in the queue and in each retrial box separately.

Keywords: Multiclass retrial queue, structured batch arrivals, prior-
ities, vacations, general services. ‘

1 Intoduction

Retrial queues are characterized by the feature that an arriving customer who
finds upon arrival all servers busy, leaves the service area and repeats his demand
after a random amount of time. Such kind of queueing systems are widely used
to model computer and communications networks where, for example blocked
terminals make retrials to receive service from a central processor, retail shop-
ping queues, telephone-switching systems where a blocked subscriber repeats
his call until a successful connection is established etc. For a complete survey



of past works and applications on retrial queues see Falin and Templeton [71,
Artalejo and Gomez-Corral [2], Kulkarni and Liang [13] and Artalejo [1].

Retrial queues with batch arrivals were considered for the first time by Falin
[4], who obtain the generating function of the number of customers in the system.
A more detailed analysis of the same model was also given by Falin [5] who
studied the non stationary regime and the busy period. Recently, several papers
have been published on batch arrival retrial queues. As a related works see
Langaris and Moutzoukis [14], Dudin and Klimenok [3], Kim et al. [11] and Ke
and Chang [10].

Multiclass retrial queues with batch arrivals were consider firstly by Kulka-
rny [12], in the case of two types of customers, while Falin (6], using a differ-
ent methodology extend Kulkarni’s results in case of more than two types of
customers. Later, Grishechkin [9] analyse the same model using the theory of
branching process with immigration and obtain the Laplace transforms of queue
lengths, the virtual waiting time and the virtual number of retrials. In all above
mentioned works, it is assumed that if a batch of primary customers arrives in
the system and the server is free, then one of the customers start to be served
and the rest of them leave the service area and repeat their demand later and
independently of each other. Later Moutzoukis and Langaris [15] extend the
above results by considering a multiclass retrial queue with correlated arrivals,
accepting n-types of customers with non-preemptive priorities and vacations,
where p-classes form ordinary queues and served according to their priority and
the rest n — p classes form retrial queues.

Recently Falin [8] investigates a new batch arrival retrial queue which oper-
ates as follows. If the server is free at an arrival epoch, then one of the customers
starts to be served and the rest of them form an ordinary queue waiting to be
served. In contrast, if the server is busy at an arrival epoch then the whole
batch of customers join the retrial box.

In this work we generalize and extend the results of Falin (8], by studying a
retrial queue with correlated arrivals, accepting n-types of customers, Py, ..., Py,
say. We always assume that at a batch arrival epoch, P; customers in batch have
priority over Pj, j > i, to occupy the server. More precisely, if at a batch arrival
epoch the server is idle then the customers of the highest priority in the batch
form an ordinary queue and start to be served, while the rest of them join their
corresponding retrial box. On the other hand, if at an arrival instant the server
is unavailable then all the customers in batch join their corresponding retrial
box. Whenever the server phases an empty ordinary queue, upon a service
completion, departs for a single vacation. Upon returning from the vacation the
server remains idle awaiting the first arrival either from outside or from a retrial
box. Any retrial customer repeats his demand independently to each other after
a random amount of time different for each type, and when the server is in the
idle mode (that is when the server returns from a single vacation).

Note here that our model is of gated type. When the server is idle the gate
opens. When the server is occupied, either by the customers of highest priority
in an arriving batch or by a retrial customer, the gate is closed. While the server
is working, arriving customers leave the service area and join their retrial box.



Upon the server phases an empty queue after a service completion, departs for
a single vacation. The gate remains closed during vacation period and will be
opened again upon the server returns from the vacation period.

From the above description it is clear that the presented model generalize
and extend the results of Falin, introducing correlated arrivals, many classes of
customers, priorities and vacations. Clearly the assumption of correlated ar-
rivals is valid and common in communication systems and computer network
technology (see Sidi [17], Sidi and Segall [16], Takahashi and Takagi [18], Taka-
hashi and Shimogawa [19]) where an arriving message (corresponds to a batch
in the model) contains several priority packets (classes of customers). The pre-
sented model is well suited to model computer network streaming multimedia
applications. The normal queue (that is formed when upon a batch arrival the
transmission medium is idle) is similar to an 1-persistent carrier sense multiple
access (CSMA) system. When the oldest packet in the normal queue detects
that the transmission medium is free, transmission begins immediately. Clearly
different type of packets requires different transmission time. If communication
medium is unavailable upon a message arrival, then the packets are sent to a
retrial queue which is analogous to a non-persistent CSMA system. The retrial
packets are retransmiting after a random amount of time (different for each type
of packets) before checking the status of the medium again. This procedure is
repeated until the retrial packet finds the transmission medium idle,

The presented system can be used to model streaming voice or video in
multimedia applications, where transmitted packets are used for playback upon
reception and also stored for future use. Arriving messages are consisted of
packets that are indexed according to their importance for immediate playback.
The packets of the smallest index in the message are those of highest priority
and are used for immediate playback. Furthermore the packets of smallest index
in batch are time sensitive in that, if they are not transmitted within a given
time threshold, they are effectively useless. If the arriving message detects the
communication medium idle, then the packets of the smallest index (highest
priority) are buffered and transmitted immediately one by one. These packets
corresponds to the priority customers. The rest packets in the message, can
still be used for later playback from the stored copy of the stream, but their
transmission time is no longer important. Moreover, arriving messages that
detects the medium unavailable are also used for later playback, while the re-
transmitting time depends on the type of packet. These packets correspond
to the retrial packets. In addition, a close down for a check (vacation) of the
medium is necessary, either just after the end of the transmission of the priority
packets (packets that need immediate playback), or after the transmission of a
retrial packet. Note here that due to the time sensitivity of the priority packets,
the check of the communication medium begins after the transmission of all
these packets. On the other hand after the transmission of a retrial packet
(from the stored copy of a stream) the medium needs immediately a check.

The article is organized as follows. A full description of the model is given
in Section 2. In Section 3 we give some useful preliminary results and a theorem
on which the whole analysis is based. The steady state analysis of the system



is given in Section 4, while the server state probabilities, the mean number of
customers in ordinary queue and the mean number of customers in each retrial
box separately, are obtained in Section 5.

2 The model

Consider a single server queueing system where customers arrive in batches of
random size according to Poisson process with parameter A. Moreover, each
batch may contain customers of different types, P;, i = 1,2,...,n, say. We
assume that at the instant of batch arrival, P; customers have always priority
to occupy first the server, over P; customers, j <4, V4,7 = 1,...,n, that also are
included in the arriving batch. Let K;, i = 1,...,n, the number of P; customers
in an arbitrary batch and let also

g(g‘:l) = Pr(il = -‘Til) = Pr(Xl =Tpy X1 = mn)’ Q(QI) =0,
G(z) = EZT:Q] g(ﬁl)é% = E:?:o Z:FU 921, oy Tn) 27 250,
8G(z 8*G(z;)

— 989Gz -
gi 8z; J£1=ll’ ki = Oz 0z |§.1=l1‘

where in general for i = 1,..,,n, 0; = (0,0,...,,0), 1; = (0, ..., 1,...0),
L; = (mijmi+1> ---»xn}: E: = (0: "'70)wi:xi+l: "':xn):
* -
z,; Y = (0: ...,O,y, Tig1yeeny mn): kT = (miami—i-l: "')mk)J k >t

If an arriving batch finds the server idle, then the customers of the highest
priority in the batch, F;, ¢ = 1,...,n, say, form an ordinary queue waiting to
be served, while the rest P;, j > ¢, leave the system and join the jth retrial
box from where seek for service individually and independently to the other
customers, after an exponentially distributed time with parameter ;.

On the other hand, if the server is unavailable at the arrival epoch, then the
whole batch leave the system and the customers join their corresponding retrial
box.

Whenever the server becomes free, that is when upon a service completion
there are no customers waiting in the queue (the retrial boxes are not neces-
sary idle), he departs for a single vacation, the length of which is arbitrarily
distributed with distribution function (DF) By(z), probability density function
(pdf) by(z), Laplace-Stieltjes Transform (LST) 8,(s), finite mean values by and
mth moments E(()m).When the server returns from the vacation remains idle and
so available to serve the next arriving customer, either from outside or from a
retrial box. It is clear that the server’s idle period starts when the server returns
from the vacation. Moreover any retrial customer can find a position for service,
only when the server is in the idle mode.

From the above description it is clear that when the server is, either busy, or
on vacation, any new arriving customers join directly their corresponding retrial
box. Thus the presented model is of gated type. The gate opens, whenever the



server becomes idle. When the server is occupied, either by the customers of
highest priority in an arriving batch or by a retrial customer, the gate is closed
and the service area is not accesible for any new arriving customer. Upon the
server returns from the single vacation the gate will be opened and the server
will become available again.

The service time S;, of a retrial P; customer (the customers who upon ar-
rival find the server unavailable), i = 1,2, ...,n, is distributed according to an
arbitrarily distribution with DF B;(z), pdf b;(z), LST f;(s), finite mean value
b; and mth moments BS"‘). We also assume that the service time S} for the P,
customers, ¢ = 1,2,...,n, who upon arrival join the queue, is arbitrarily dis-
tributed with DF Uj(z), pdf u;(z), LST fi(s), finite mean value %; and mth
moments ﬂgm). Finally, all the above defined random variables are assumed to
be independent.

3 Preliminary results

In this section we obtain some preliminary results and state a theorem, which
is important for the analysis that follows.

Let A;(t), i =1,...,n to be the number of P; customers that arrive in the
interval (0,%) and define

SEI (t) = Pr[Ai(t) = k,’, i 1, ...,n],
then it is easy to understand that
Eoo Sk (t)gf‘ — ¢~ M1=G(z))t

The generalized completion time of a retrial P; customer, i = 1,...,n, is
defined as the time elapsed from the epoch at which he commences service until
the epoch at which the server is idle for the first time. Clearly from the model
description, the generalized completion time of a retrial P; customer equals his
service time plus the vacation period that follows. Note that due to the gated
type of the model, the server remains always idle upon returning from a vacation.

Let us define by d{"’?(t} the pdf of such a generalized completion time during
which k,, r = 1,...,n new P, customers arrive in the system. Then it is easy to
understand that

<%} i i k
Di(s,2)) = X g, [0 e dD (0)28 = Bi(s + X — AG(21))Bols + A — AGlzy))-
(1)
Define fori =1, ...,n,
pi = Agibi, Poi = Agibo.

Now we are ready to state the following theorem. The proof of the Theorem
1 is based on the concept of the generalized completion time and is similar to
the proof of Moutzoukis and Langaris [15] and it is ommited here.



Theorem 1 For any permutation (i1,ig,..,i,) of the set (1,2,...,n) and for
(@) |2i,,| < 1 for any specific m = j+1,..,n and |z;| < 1 for all other
r=j+L.,nwithr#m, or(b) |z, | <1 forallr =9+1,...,n and P, > 1,
or (c) |z | <1 forallr=4+1,..,n and pi; > 1= p;,_, the equation

Zi; — Dij (0: Wi;_y (zij! "'}z‘in)) =0, (2)

has, for j = 1,..,n one and only one root, 2y = Tiy(Zig 000 %), 1 F T,
z;, = x;, say, inside the unit disc |zij1 < 1, where the vector wi,(zi;, ..., 2i,)
is defined by

Win(Fh i) = (Blpeati)s
Wiy (Zigs oy i) = Wig (i (Zigy ooy Zin ), Zigy ooy 5 )s
Wi (B i onZi,) = Wi, (3 (Zirprs ...,ziﬂ),z,-kﬂ, - N =
while

By =% i Prs £ Porm)-
Moreover for z;, =1, r =3+ 1,...,n and Pi;_, < 1 the root zi;(1,...,1) is the

smallest positive real root of (2) with x;,(1,...,1) < 1 ifpy; > 1 and zi, (1, ..., 1) =
Lifp;, <L

By differentiating both sides of (1), with respect to z;, at the point s =
0, z; = 1, we obtained fori =1,...,n

Pi = p; + Pais

which is the traffic intensity of the retrial P; customers.
Thus the total traffic intensity is given by

pr = (s + o) = A X, 9i(bi + Bo).

In the following sections we shall consider the system in steady state, which
exists if and only if p* < 1. Thus the condition p* < 1 is assumed to hold
from hear on. Note here that p; + py; represents the expected number of retrial
P; customers that arrive during the generalized completion time of a retrial P;
customer.

4 Steady state analysis

Let us assume that assume that the system is in steady state, so that pr < 1.
Let also Q;, i = 1,...,n, be the number of P; customers in the queue, and N;,
i=1,..,n, be the number of P; customers in the ith retrial box. Define finally

U;, busy with a P; customer, i = 1,...,n from the queue,
_ by, busy with a F; customer, i =1,...,n from the ith retrial box,
= 0, vacation,
id, idle,



the random variable that describes server’s state, and let for ¢ =1,...,n,

Pi(miky,2) = Pr(Qi=my Ny =k, =u,z <U; <z +dz), (3)
and
pilk;,x) = Pr(N, =k, & =b,z < B; <z +da), A -
po(ky,z) = Pr(N, =k, =0,z < By < z+dx), (4)
q(ky) = Pr(N, =k, { = id),

where W; is the elapsed time period of any random variable W. Define also for
i= LN

! oo ' .ok
P; (yi,z,7) = zm.;=0 ZZ‘:=91 pi(miaﬁla m)y;niéf
k
Pi(zy,z) = Z;_c::gl pilky, %)z,
k
Q(z) = ZE;QI ai(kq)z1"

By connecting as usual the probabilities (3), (4) to each other and forming the
above defined generating functions we obtain for i =1,...,n,

Pi(yssz1,2) =  P/{yi,2,,0)(1 - Ui(z)) exp[— (X — AG(z,))a],
Pi(z1,2) =  Pi(21,0)(1 - Bi(w)) exp[— (A = AG(z,))z],
AQ(z1) + Yoy aiziﬁ%@(él) = fgoo Po(z1,)no(x)dz, (6)
where 7;(z) = b;(z)/(1 — B;(z)), n;(m) = u;(z)/(1 — Uj(z)). Let us define
ki(z1) = Bi(A — AG(21)), ri(z1) = filA —AG(z1)), i=1,..,n
The corresponding boundary conditions are given by

P;(miaﬁho) = AZ_‘::*O +1 : m‘+1)9(1ﬁ1aﬁi+1 = 7_55,.5.1)

(5)

> pl(mi + 1, ky, 2)ny(z)de, i=1,2,..,n,
pi(k;,0) =  ai(ki +1)g(k; +1;), i=1,.,n
PO(E].,O) = 1—1[f0 pi(.&.laz m(ﬂf)d-ﬂ: +f O kl: )ﬂ;(m)dﬂf]
Forming the generating functions, we arrive easily for i = 1, ..., m,

('.Ui = Ti(éi))P;(yi: EZR) 0) = A[G(E: y‘-) = G(£:+1)]Q{§.1) - P;(Oailao)ri(él)(' )
T

Then setting, y; = 7i(2;), we obtain
A ")=6 “E)at) (8)

yi—Ti(z;)

P (yi,21,0) =
Moreover
P;(z,,0) = aiziaiz‘.Q(él)s

; (9)
Py(2,0) = i1 Pi(zy, 0)kiz1) + 20 Pi (0,21, 0)ri(z1)-



Integrating (5) with respect to z, we realise that P(z;,0) = P(z;)e (z,),
P. (y,,gl,O) = P (y-s.él)h-(;""-l)? where

A=AG(z A=AG(z
e.(§1) = ‘ﬁ;T;_]l)—) h-.(él) = jT((i‘l‘jl
Then relations (8), (9), becomes
' AlG(2T Yiy~g(e* Tilz1) =
hi(z)Pl(ysyzy) = A0 —21AG) (10)
ei(z1)Pi(z,) = aizié%:@(éﬂ:
eo(zy)Po(z;) = Z?:l ei(z1)Pi(z,)ki(z,) (11)

+3Q(z1) T, (G2} &) — Gat )]

Moreover (6) becomes

AQ(z1) + X, 0z 2 Q(z1) = eolzy)Po(zy)kolz:)- (12)

Note here that if we exclude the concept of vacations, assume that any
batch contains only one class of customers and that the service time § = 5,
then the above defined generating functions Q(z1), Pi(z), P,; (yi,2;) becomes
Q(z), P(2), P'(y, z) respectively. In that case our model yield to that of Falin
[8]. More precisely, the generating function of the total number of customers in
the system in page 4 in Falin (8] (P(y, z)), is connected with the corresponding

7

in our paper Q(z), P(z), P (y,z) with the following relation,

P(y,2) = Q(z) + y[P(z) + P (3, 7)].

Substituting (11) to (12), we arrive after manipulations to the n-dimensional
partial differential equation

Z?zl oz — Di(oaéz)]é%Q(El) + Al - kO(EI)F(él)]Q(El) =0, (13)

where ‘
Di(o’gl) = ki(él)kO(El)a 1= 1: ey Ty

Flz) = YL,(G( ") - 6(zz,,)).

It is clear that, in order to obtain the generating functions (10)-(11) we have
to solve first equation (13), which hardly can be solved. Our objective now
is to investigate the mean number of customers both in priority queue and in
each retrial box separately, by using the relations obtain so far and a special
methodology used first in Falin [6].



5 Performance measures

To proceed to the main analysis we have to calculate at point y; =1, z; =1,
the generating functions (10)-(11).

Theorem 2 For p* < 1, the generating functions (10)-(11), at point y; =
1, z; =1, are given by
Pt(rl_l) = }‘Ei(gi_ng(.]zl))a i=1,..,n,
P;(lz;l..l} = ’\g:ﬁ‘iQ(ll)J i= 1,...,'?’1,,
Po(1;) = Abo{Xi;g:+ QL[ - X, 91}

-

- 1—
QL) = 14+Abo+>0, Agl[@i—bi—bo]

(14)

where gf = 572 g2=1;
Proof: Let us define
N(Qlaéﬂ =Q(z1) + Lo Pilz) + X P£ (Y3, 21)- (15)
Setting in (10) y; = 1, z; = 1; we obtain easily
Pl 1) = Mina@(le)y %= Ly
while the second of (11) becomes
Po(Ly) = bo S0, 2 + M5 Q(Ly)- (16)

Substituting the first of (11) to (13) we easily arrive at,

- koiz—l_)g(ZI z - P; fi) [D:(0,2,) — 2] (17)

i=1

Consider now any arbitrary permutation (i1,...,%,) of the set (1,2,...,n). Then
using Theorem 1 and replacing repeatedly in (17) z;,; the corresponding root
i, (2 +1) for j =1,. — 1, we could eliminate all except one term of the left
hand side of (17). After manipulations we arrine fori = 1,...,n in

P(1l) = 2£Q){a1 + 2o + iy Mg} (@5 — b5 — Bo)] + g¥(p* — 1)}
(18)
Substituting (18) in (16) and using the fact that N (1;,1;) = 1, we obtain
after some algebra

1 —g"
QL) = 1+ Xbg + > q Agf[a; — b; — bo]’ )

Replacing (19) in (18) and (16), we arrive at the first and third of (14) respec-
tively. O




Theorem 3 The mean number Q, of Py, k=1,.,n customers in the queue
is given by

QL) | PG ™)

Qe="—5 Byt =1 (20)

Proof: Setting z; = 1, in relation (10) we arrive at

P;(yk,ll) = Mz Q(1,) (G} :;)_‘“10(12)] '

Differentiating at point yx = 1 we easily obtain relation (20) and the theorem
has been proved. ([

Define now for every k= 1,...,n,

me= 2ZE|. ) {1+ (A on)bo + 0y Agi — AT, i

A g Oril9i — 01)} — Mgk — Spasy (ox — 07) iy 00 228,
+AQ(l1)5{k>1}{Ez--2 Okigis — Zz—kJrl Bk%%kl'zk_l‘
892G (2! 8°G(z;
— i Ok G ) | ye — O ‘—azgg‘—)lg;ﬂ;}
+Agi{3 T[98 + 57 (g: — 5)Q(L)] + Po(Ly) (3 — Bol},
- (21)
where Or; = a;(b; + by)/(or + ;).

The next step is to obtain the mean number of Py, k = 1,...,n customers in
each retrial box separately.

Theorem 4 The mean number Ny of Py, k = 1,...,n customers in each retrial
boz, can be found as a sulution of the following system of linear equations

1= A Okl Ve — Age >0 0iNi = A1 - Q(1,)) > Bikgri + T,

(22)
where Ty, is given by (21).
Proof: It is clear that
= 3@ z AP;(z 6P 1,z
Nk ( 1)|£1—1 it Z ( 1 Igl— + Z ( l)l (23)

Differentiating now the relations (10), (11), we obtain 8P;/8zx, 8P, /8z; as
functions of 8Q/8z; and 92Q/dz0z. Clearly, by differentiating relation (10),

10



(11) we obtain

¥
aP; (1.2z,) _ - 8Q(z)) Agrgi —(2)

szz {51=11 = Agii Bz |51=ll + y;g Ui
8Py(z, 7 9%Q(z, 226,58 (g: -0l QM1 )

a.gf )|£1=lz = aibi asz(aEze) lgy=1, + =2 (gz 59N, i=1,.yn
9Po(z,) 7 8°Q(z;) 7 9Q(z;)

Buz: |:i1=.l1 = Z:?=1 aiboﬁ.rﬁ‘?r|51:11 + (A i O,’k)bo EETS |51=-1—1

3
+AgkPo(Ly)[54 — bol-
(24)

The main problem now, is to obtain a formula for 82Q/82,0z;.
Following the methodology of Falin [6] and using relations (10)-(12) we arrive
after manipulations at the following basic equation

AQ(z1)[G(z1) — Z?:i(G(éf e G(E:+1))]
Tl - DHEL = - - AGEIN L z).
(25)
Differentiate (25) twice, firstly with respect of z; and then with respect of
z;, setting finally z; = 1; we obtain after some algebra

X 32@(53) A N N g1 — 1 _ )\362(&])
(oo + ) Bar 071 |£,_=L1 (9 Ni + 9: Ni) + Agri( QL)) Ban Ig1:11

x[gi — dgis13(9: — 97)] — )\%fllklﬂl gk

—0rks13 (g8 — 98)] + AQ(L1) 0k, i>1}[9Ks
8%a(zD) 8%G(z1)

—0liok) Taraes =1y — O(k>i} oo
8%2G(z;

—5{k=i}—§z(?L)‘|5::L;]a

e
zi=1]

(26)
where
{ 1, if A holds,
dgay =

0, else.

Replacing finally (24) using (26), in (23) we arrive after manipulations at
(22) and this proves the theorem. O

6 Conclusion

In this work we study a new multiclass retrial queue with structured batch ar-
rivals, priorities and vacations, motivated by a recent work of Falin [8]. If an
arriving batch finds the server idle, then the customers of the highest priority in
batch form an ordinary queue, while the rest customers join their corresponding
retrial box. In contrast, if the server is unavailable at the epoch of a batch
arrival, all the customers in batch join their corresponding retrial box. Re-
trial customers seek for service individually and independently after a random

11



amount of time, different for each type of customers. Upon a service completion,
if the server phases an empty ordinary queue, he departs for a single vacation.
Upon the server returns from the vacation remains idle awaiting the first arrival,
either from outside or from a retrial box to start the service procedure again.
For such a system the mean number of customers that form an ordinary queue
upon a batch arrival are obtained in closed form. Using a special methodology,
first used in Falin [6], the mean number of customers in each retrial box are
obtained as a solution of a system of linear equations.
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